ENVIRONMENTAL STATEMENT

(Form - V)

Under Rule – 14 of Environment Protection Rules, 1986 and Amendment, 1993

Hingula
Opencast Mine

For the year 2022-23

Mahanadi Coalfields Ltd.

Post: Jagruti Vihar, Burla,

Dist: Sambalpur, Orissa-768020

FORM-V **ENVIRONMENTAL STATEMENT**

Environmental statement for the financial year ending 31st Mar, 2023 Part - A

i) Name & Address of the owner/ occupier:

of the industry operation or process

(Name of the Project Officer/ Sub-Area

Manager & Office address to be given)

S.V.Joshi

Project Officer (Hingula OCP)

P.O -Gopal Prasad, Talcher

Dist: Angul, Odisha

Pin: 759103

ii) **Industry Category**

iii)

V)

Production Capacity (Coal production

During the year 2022-23)

15 MTPA (12.38 Million tonne)

Primary (Coal Mining Operation)

iv) Year of establishment

Date of the last Environmental

Statement submitted.

1998

16th September, 2022

Part - B

Water & Raw Material Consumption

Note: Average Water Consumption (Cu-m/ day) for the whole year is given. Raw material consumption is given per unit of coal produced.

(I) Water Consumption (Cu-m/ dav):

Ser No.	Industrial/ Mining	Consumption in Cu-m/ day
1. a	Haul Road Dust Suppression	1598
b	Dust Suppression at CHP	
С	Dust Suppression at Siding & Coal Stock	1615
d	Fire Fighting	56
е	Workshop	50
f	Others	50
2.	Domestic	80
3.	Total in kℓ/ day	3449

Name of the Product	of the Product Water Consumption per unit of p		
	2021-22	2022-23	
Coal	153.93	101.69	

(II) Raw Material Consumption (per tonne of coal):

Name of Raw Material	Consumption of Raw Material	(per tonne of Coal produced)	
	2021-22	2022-23	
H.S. Diesel (ℓ/t)	1.34	1.01	
Petrol (l/ t)	NIL	NIL	
Lubricants (l/ t)	0.044	0.031	
Electricity (Units/ t)	0.986	0.892	
Explosives (kg/ t)	0.950	0.619	

Part - C Pollution Discharged to Environment/ Unit of Output

(Parameter as specified in the 'Consent' issued)

Pollutants	Quantity of pollutants discharged (mass/ day)	Concentrations of pollutants in discharges (mass/volume)			Percentage variation from prescribed standards with reasons
Water (annual	average)				
T00 (10		Mine Effluent	OGT Outlet	STP Outlet	
TSS (mg/ℓ) BOD mg/ℓ)	Not possible to	31	38		
COD (mg/l)	quantify	20	29.167	NA	Within Prescribed Limit
pH O & G (mg/ℓ)		7.51	7.79		
Air (Ambient ai	ir quality of one s	<4.0	<4.0	\	
SPM (µg/m³)	quanty of one s	tation – an	nual avera	ige): Time	office
PM ₁₀ (μg/m ³)	Not possible to		175.29 90.21		
PM _{2.5} (μg/m ³)	Not possible to quantify		37.63		Within Prescribed Limit
SO ₂ (μg/m ³)	quantity	1			The state of the s
NO _x (µg/m³)			17.45		

Part - D

As specified under Hazardous Wastes (Management & Handling) Rules 1989

Hazardous Waste	Total Quantity (kg)			
	During the previous financial year (2021-22)	During the current financial year (2022-23)		
(a) From process :				
i. Burnt Oil in Workshops	16435 ltr	15155 ltr		
ii. Oil soaked filters	184 nos	172 nos		
b)From pollution control facilities:				
i. Oil/ Oil imulsion recovery from Oil & Grease Trap	930 lit (Oil)	900 lit (Oil)		
ii. Oily sludge	36 m³ (Oily Sludge)	42 m ³ (Oily Sludge)		
iii. Chemical Waste(if any)	Nil	Nil		

Part – E

Particulars	Total Quantity	
(a) E	During the previous financial year (2021-22)	During the current financial year (2022-23)
(a) From process (Top soil and Over burden)	18.696 Mm ³	16.423 Mm ³
(b) From pollution control facilities (STP & Sed-Pond Sludge)		
(c) 1- Quantity recycled or re-utilized (OB back-filled)	18.696 Mm ³	11.623 Mm ³
2- Sold		
3- Disposed		

Part - F Please specify the characteristics (in terms of concentration & quantum) of hazardous as well as solid waste and indicate the disposal practice adopted for both these categories of wastes.

(1)	Hazardous	Wastes.
•	,		TTUSICS.

Name of Hazardous Wastes	Quantity generated in the year 2022-23	Disposal Practices
Burnt Oil, etc. (ℓ) (from W/Shop)	15155 ltr	By Auction to authorized parties
Oil soaked filters(kg) (from W/Shop)	172 nos	Disposed off in impervious lined pit
Oil & Grease (kg) (from ETP/ OGT)	900 lit (Oil)	By Auction to authorized parties
Oily Sludge (te.) (from ETP/	42 M ³ (Oily Sludge)	Disposed off in impervious lined pit
Oil imulsion		
Chemical Waste if any (kg)		
Battery (nos.)	46 (Nos)	By Auction to authorized parties

Note: A detailed note on disposal practices of the above should be given separately.

(II) Solid Wastes:

Solid Waste	Quantity generated in the year 2022-23	Disposal Practices
Top Soil (m ³)	0.0375 Mm ³	Spread over OB dump for reclamation
OB (m ³)	16.423 Mm ³	Used to fill the quarry voids
STP & Sed-Pond Sludge		Used as manure

Land Reclamation & OB disposal – progressive till March. 2023 :

<u> =ana Regiamation & OB disposal – progressive till March, 2023 :</u>				
1) External OB dump	Area (ha.)	OB Volume/ Nos. of Plants		
	80.00	32.82 Mm3		
2) Excavated land	425.29	74.013 Mm3		
3) Land affected (1+2)	505.29	- 11010 101110		
4) Backfilled (out of 2)	175.84	41 102 Mm 2		
5) Land physically reclaimed (out of 3)	83.58	41.193 Mm3		
6) Land biologically reclaimed (out of 3)	00.00			
*11.25 ha OB dumped in external OB dump and 8.87 ha OB dumped in internal dump during 2021-22	20.12	60298		

Part - G Impact of pollution control measures on conservation of natural resources and consequently on cost of production.

In order to carry out mining in an eco-friendly manner, a detailed Environmental Management Plan (EMP) was prepared by Regional Institute-VII of CMPDIL. The main pollution control measures suggested in EMP along with the measures implemented so far have been summarized in the Table-1.1 to 1.3.

Table – 1.1

<u>Air Pollution Control Measures</u>

SI.	EMP D			
No.	EMP Provisions	Whether provided	Remarks	
	10/-1	or not		
1	Water sprinkling and grading of all roads to minimize air-borne dust from vehicles.	Provided		
2	Biological reclamation of land.	Dravidad		
3		Provided		
	Green belt around mine & infrastructures.	Provided		
4	Drills fitted with dust control devices.	Provided		
5	Dust suppression/ dust extraction system to be provided in CHP.	Provided		
•	Improved maintenance of plant & machinery.	Provided	By	
6		111111111111111111111111111111111111111	scheduled	
7	Mechanized coal transportation system.		maintenance	
	me shame of cour transportation system.	Provided		

Table – 1.2

01	Water Pollution Control Measures					
SI. No.	EMP Provisions/ Additional precautions	Whether provided or not	Remarks			
1	Mine water is to be collected in central sump on dip side of pit. This will act as sedimentation lagoon.	Provided				
2	Run-off around reclamation area will be controlled by providing catch drains and sedimentation lagoon combination.					
3	surface run-off from external dump would be collected through a series of contour drains which would be connected to a water retention pond. The clear water from this pond will be regulilized.	Provided				
4	Domestic waste water will be treated in screens, oxidation pond/ aerated lagoon. Sanitary waste to be disposed off into septic tank & soak-pit	Provided	STP provided for Balram Colony.			
5	trap & sedimentation tank.	Provided				
6	Zero discharge from mine shall be maintained.	Maintained				
7	Piezometers shall be installed for measurement of under-ground water depth and its quality	Provided	MTP-14 Inside the premises of Pirakhaman village Primary school MTP -15 Besides Sujan Pradhan's House in Chhotoberani Village near Nalla MTP-16 Backside of Hingula mandir VIP guesthouse			

Table – 1.3 Land Reclamation

<u>Land Reclamation</u>				
SI. No.	1 1041310113	Whether provided or not	Remarks	
1	Top soil Management: Proper stripping, Storage, and Relocation of top soil.			
2	Physical Reclamation of OB Dump: Proper reshaping and regrading of top surface, Providing drainage arrangements and top soil spreading on external and internal dumps.	Provided		
3	Biological Reclamation: Plantation of suitable species of herbs, shrubs & indigenous trees over technically reclaimed dumps.	Provided		

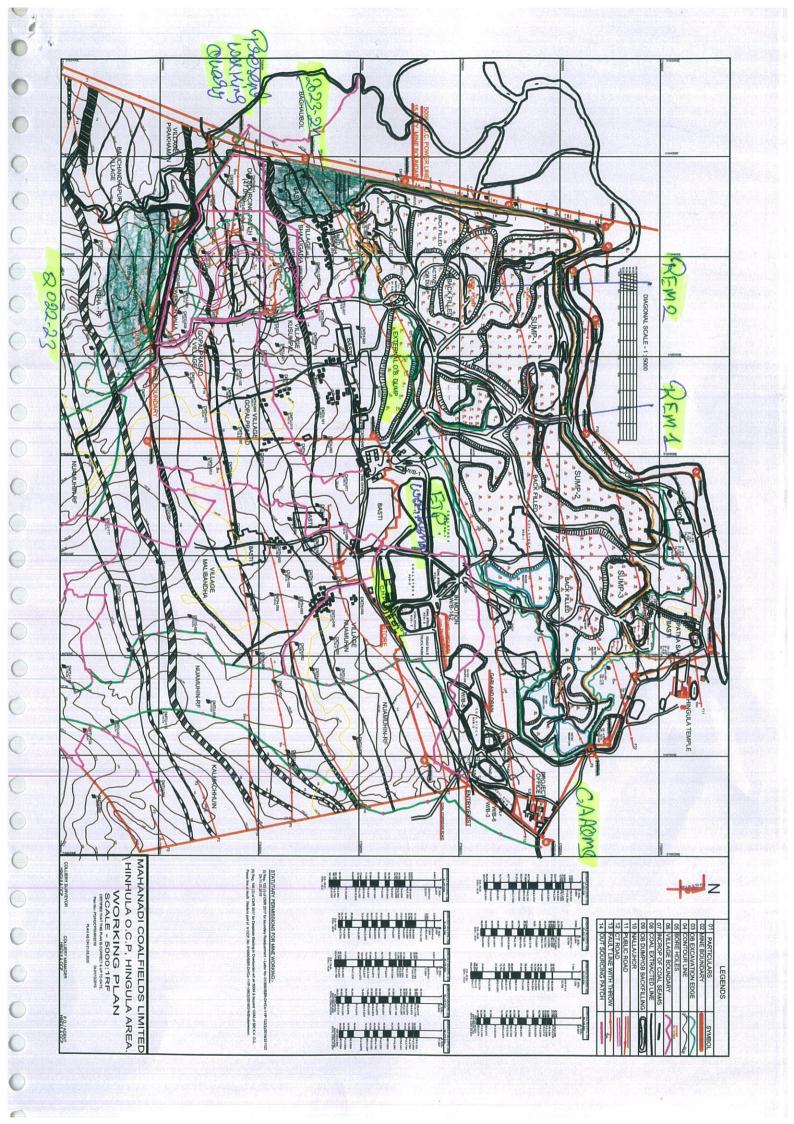
IMPACT OF POLLUTION CONTROL MEASURES ON COST OF PRODUCTION
COST OF ENVIRONMENTAL MANAGEMENT DURING 2022-23 was Rs.3.125 per tonne of Coal.

Part – H

Additional measures/ investment proposal for environmental protection including abatement of pollution, prevention of pollution.

Head	Amount Rs. (approx)	
Tree Plantation	40,00,000	
Environmental Monitoring	1,30,00,000	
Mobiles & fixed water sprinkler and other dust	1,00,00,000	
suppression ,measures	2,00,00,000	
Road repairing	50,00,000	
Catch/Garland drain	00,00,000	
	3,00,000	
Maintenance of Continuous Ambient Air Quality	-,,	
Monitoring Station	3,00,000	
ETP	93,00,000	
Total		
	5,19,00,000	

Part - I


Any other particulars for improving the quality of the environment.

Note: Please attach a plan showing the relevant features like Present Working/ Quarry, External Dump, Back-filling, Plantation, Sedimentation Pond/ MDTP, Oil & Grease Trap/ ETP, Workshop, CHP, STP, etc. and Environmental Monitoring Stations.

Signature of the Project Officer.

(With seal)

GM (Mining)/Project Officer Hingula OCP

